Instance based learning

5

• Instance based learning simply store the data points without explicitly describing the target function

- Calculates the relation between the test instance and each training instance
- Lazy learning: It delays processing until a new instance comes in
- Example: KNN, Locally weighted regression

K-NN

Key idea: just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

- Given x_q , take vote among its k nearest nbrs (if discrete-valued target function)
- take mean of f values of k nearest nbrs (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{\sum_{i=1}^k f(x_i)}{k}$$

1

1

- \bullet Instances map to points in \Re^n
- Less than 20 attributes per instance
- Lots of training data

Advantages:

- Training is very fast
- Learn complex target functions
- \bullet Don't lose information

Disadvantages:

- Slow at query time
- \bullet Easily fooled by irrelevant attributes

Voronoi Diagram

The convex polygon surrounding each training example indicates the region of instance space closest to that point (i.e., the instances for which the 1-NEARESNT NEIGHBOR algorithm will assign the classification belonging to that training example).

Distance-Weighted kNN

Might want weight nearer neighbors more heavily...

and $d(x_q, x_i)$ is distance between x_q and x_i

Note now it makes sense to use all training examples instead of just k

 \rightarrow Shepard's method

Time complexity of kNN

O(NM+kN)

N=# of training docs M=Number of features

- Initialize *selected*_i=0 for all observations *i* in the training set
- For each training set observation i, compute *dist*_i, the distance from the new observation to training set observation *i*
- For j=1 to k: Loop through all training set observations, selecting the index i with the smallest dist_i value and for which selected_i=0. Select this observation by setting selected_i=1

Return the k selected indices

Time complexity of kNN

O(NM)

N=# of training docs M=No. of features

- For each training set observation *i*, compute *disti*, the distance from the new observation to training set observation *I*
- Run the quickselect algorithm to compute the kth smallest distance in O(N) runtime
- Return all indices no larger than the computed kth smallest distance

```
function quickSelect(list, left, right, k)
```

```
if left = right
return list[left]
```

Select a pivotIndex between left and right

```
if k = pivotIndex
    return list[k]
else if k < pivotIndex
    right := pivotIndex - 1
else
    left := pivotIndex + 1</pre>
```

kNN: Memory/instance based learning

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - •We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- But kNN can be very inaccurate if training set is small.

Decision surface

Bias and variance trade off

Why ML needs large dataset

Curse of dimensionality

-

KNN is a non-parametric model

Disadvantages

- Cost of classifying new instances can be high
 - Nearly all computation takes place at classification time rather than when the training examples are first encountered
 - Efficiently indexing training examples
- Consider **all** attributes of the instances when attempting to retrieve similar training examples from memory
 - If the target concept depends on only a few of the many available attributes, then the instances that are truly most "similar" may well be a large distance apart.

Assumption: Similar improve have similar output.
Test point: 2
S₂: the set of the k nearest multiplicant of a.
S₂: the set of the k nearest multiplicant of a.
S₂: the set of the k nearest multiplicant of a.
D: Deteset:

$$\Psi(x',y') \in D \setminus S_2$$

distance $(x,x') > max$ distance (x,x')
 $(x'',y'') \in S_x$
classifier $h(a) = mode(\{y'': (x'', y'') \in S_x \})$
when mode (k) means to select the label of the
highest occurrence,

Bayes optimal clamifia
$$p(y|x) = p(+|x) = p(-|x)$$

 $y^* = h_{opt}(a) = arg max $p(Ma) dx$
 $\in Baynopt = (1 - p(y^*|a)) + bowolog of emm rate
 $E Baynopt = (1 - p(y^*|a)) + bowolog of emm rate
 $bowolog of emm rate$
 $t = bowen erm$
the error of the 1-NN error is no more than twice
the error of the Bayes optimal clamifier.
 $(0^{\dagger} 0^{\dagger} 0^{\dagger}$$$$

$$\begin{aligned} \mathcal{X}_{NN} & \leftarrow k \forall n \text{ nearrant meighbordup of } \mathcal{Q} \\ n \to \omega \quad d^{i} \text{St} (\mathcal{X}_{NN}, \alpha) \to 0 \implies \mathcal{X}_{NN} \to \mathcal{X} \\ \mathcal{Y}, \overline{\mathcal{Y}} \\ \mathcal{Q}, \overline{\mathcal{Y}} \\ \mathcal{Q}, \overline{\mathcal{Y}} \\ \mathcal{Q}, \overline{\mathcal{Y}} \\ \mathcal{Q}, \overline{\mathcal{Y}} \\ \mathcal{Y} \\ \mathcal{Y}$$

$$= 2 \in B_{amopt}$$

 $= Cuone of dimensionality _____
in higher dimension space. Points that are drawn
fm a prob dish., tend to never be close together.$