Instance based learning



* Instance based learning simply store the data points without explicitly
describing the target function

* Calculates the relation between the test instance and each training
Instance

* Lazy learning: It delays processing until a new instance comes in

 Example: KNN, Locally weighted regression



K-NN

Key idea: just store all training examples (x;, f(z;))
Nearest neighbor:

e Glven query instance x,, first locate nearest
training example z,,, then estimate

flzy) < f(z,)
k-Nearest neighbor:

e Given z,, take vote among its k nearest nbrs (if
discrete-valued target function)

e take mean of f values of k nearest nbrs (if X
real-valued )
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¢ Instances map to points in R"
e Less than 20 attributes per instance

e Lots of training data

Advantages:
e Training is very fast
e Learn complex target functions
e Don’t lose information
Disadvantages:
e Slow at query time

e Fasily fooled by irrelevant attributes



Voronoi Diagram

The convex polygon surrounding each training example indicates the region of instance space closest to that point (i.e.,
the instances for which the 1-NEARESNT NEIGHBOR algorithm will assign the classification belonging to that training
example).



Distance-Weighted ¢tNN

Might want weight nearer neighbors more heavily...

where

——
d( 2, %)
and d(z,,z;) is distance between z, and x;

Note now it makes sense to use all training
examples instead of just £

— Shepard’s method
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Time complexity of kNN

O(NM+kN)

N=# of training docs
M=Number of features

* Initialize selected.=0 for all observations i in the training set

* For each training set observation i, compute dist;, the distance from the new
observation to training set observation i

* Forj=1to k: Loop through all training set observations, selecting the index i with
the smallest dist, value and for which selected.=0. Select this observation by

setting selected.=1

Return the k selected indices



Time complexity of KNN

O(NM)

N=# of training docs
M=No. of features

* For each training set observation i, compute disti, the distance from the new
observation to training set observation /

* Run the quickselect algorithm to compute the kth smallest distance in O(N)
runtime

e Return all indices no larger than the computed kth smallest distance

https://en.wikipedia.org/wiki/Quickselect



function quickSelect(list, left, right, k)

if left = right
return list[left]

Select a pivotIndex between left and right

pivotIndex := partition(list, left, right,
pivotIndex)
if k = pivotIndex
return list[k]
else if k < pivotIndex
right := pivotIndex - 1
else

left := pivotIndex + 1



kNN: Memory/instance based learning

=*No training necessary

"But linear preprocessing of documents is as
expensive as training Naive Bayes.

="\We always preprocess the training set, so in
reality training time of kNN is linear.
=kKNN is very accurate if training set is large.

=But KNN can be very inaccurate if training set is small.



Decision surface



Bias and variance trade off



Why ML needs large dataset



Curse of dimensionality



KNN is a non-parametric model



Disadvantages

* Cost of classifying new instances can be high

* Nearly all computation takes place at classification time rather than when the
training examples are first encountered

* Efficiently indexing training examples

e Consider all attributes of the instances when attempting to retrieve
similar training examples from memory

* If the target concept depends on only a few of the many available attributes,
then the instances that are truly most "similar” may well be a large distance
apart.
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